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The problem of flow of an inviscid conducting fluid past an arbitrary profile in 

a magnetic field perpendicular to the stream plane is reduced to a system of in- 

tegral equations. An exact solution is derived for the case of an irrotational flow, 
and is illustrated on the example of flow past a circular cylinder. The asympto- 

tic solution of the problem is examined at high magnetic Reynolds numbers. 

For the problem considered here the equations of hydrodynamics for a laminar potential 
flow can be written in the form 

AH - v;;: (VVH) = 0 (vn = I/ wo4 (1) 

;+++Bg!L con&, rot v = 0, div v = 0 

where Y, is the magnetic viscosity, j.& and ps are the magnetic permeabilities of fluid 

and vacuum, respectively, and o is the conductivity of fluid. 
The boundary conditions for velocity v are the same as in the absence of a magnetic 

field. Because of this it follows from (1) that the motion of fluid is not affected by a 

magnetic field which remains perpendicular to the plane of flow, and the problem red- 
uces to the determination of the distortion of that field by a given stream, i.e., to the 

determination of H appearing in the first of Eqs. (1) for a known function v (5, Y). 

To analyze the solution of this problem independently of the profile form we pass from 
variables x, y to Q, (3, y) and Y (,r, y) (w = rf, + iY is the known complex poten- 
tial of the stream). The first of Eqs, (1) expressed in terms of variables @ and Y is of 

the form 
aZH a2H 1 aH 

-tayrs-Y,aa)= am2 
fl 

(2) 

The flow region D outside the contour c’ mapped onto the plane (D, Y (region D*) 
sectioned along the real semiaxfs @ > U , is shown in Fig. 1 together with correspond- 
ing points [of the profiles Circulation l? = @n_*-- Wn,, around the aerofoil is assu - 

med to be specified, Conformal mapping of L) onto D* is carried out by means of fun- 

X 

Fig. 

ction W (2) = dc, + iY. 
W 

1 

The method of variables @, Y 
had been used some time ago by 

4’ C’ .J: Boussinesq [l] in the problem of heat 

a: Q? convection from a cylinder, and later 
applied in &, 37 to the analysis of 

1. magne~hydr~ynamic flows over 

23.4 
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semi-infinite bodies. The problem of heat convection in a potential stream 243 that 
of the flow of a viscous conducting fluid along the generatrix of a cylinder in a transverse 
magnetic field ES], and others reduce to equations of the kind of (2). iiowever for 
I’ # 0 the specific properties of regionD* in the plane zli, Y inhibit the application 

of solutions derived in [X - 51 to this problem in the case of arbitrary numbers R,.,, . 
Let us formulate the magnetic field boundary conditions. First, it should be noted that 

the first of Eqs, (1) defines the magnetic field H correct to within a certain constant 
H, which can be considered to be the external field specified at in~ni~. Hence it is 
sufficient to specify the boundedness of H at some distance from the profile as the con- 
dition at infinity. 

We assume that a thin conducting layer [of fluid] of variable thickness 6 whose con- 
ductivity is (le, lies along the profile surface and that an external source of current of 

specified potential U at terminals is switched to this layer. Under the latter there is an 

insulator (the “body” of the profile) whose surface is defined by equation ?Z = - 6 (s), 
where n is the coordinate along the outward normal to the contour C,and s is the arc 

coordinate (Fig. 2). 
The assumption that the conducting layer is very thin implies that everywhere 6 (s)< 

n < L,where L is a characteristic dimension along 

II 
t- 

s (e.g., the radius of curvature of profile C). 
Since throughout the fluid the components of current 

17s s v 

.,- 

density j are of the form j, = i!iH I an and 

t 
4 i, = - S? I &,from the continuity of tangential 

Se 
components of the electrical field E = j / u - 
- 

Y 

ppo [v X H?we obtain 

/&l=@ 1 VatI 
aI3 

c > an, = -$ tisL0 (3) 

Fig. 2. 
where j,e is the tangential component of current 

density in the conducting layer region (- 6 (s) < n < 0). In the conducting layer 
region equations div p = 0 and rot Ee = 0 are, owing to 6 (s) < L,valid through- 
out that layer and, furthermore, the positions of current sources can be defined by 

-g (a”EJ + g (dE,e) = 0, -fg - $ = 0 

Since the layer is thin, from the second of Eqs. (4) we have dE,~fdn= 0 , hence 

E,e = E,“(s) (5) 
Integrating the first of relationships (4) over the layer (-6 (s) < n < 0) and taking 
into consideration (5) and the boundary condition for J,,” 

(iRhwl = &Jo = - ( > g 0’ KL6(s) = 0 

we obtain 

Taking into account (3), and since E,e(cousequently also 
conducting layer. we have 

jee) do not vary across the 
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Hence, assuming that H (5, Y) . 1s continuous up to the contour C and that in the 
following 6 = con&we obtain 

H 
69 8H _-- zzz 

5 an ! Co e 

This relationship represents the boundary condition for our problem. Constant co can 
be defined in terms of potential u at the source terminals by 

(8) 
c c 

Relationships similar to (6) were considered in [6, 71. 
Let us examine two limit cases of the general boundary condition (7). Let I be the 

characteristic thickness of the fluid layer surrounding the profile in which H and 6’H / 
/ dn are of the same order. It follows from the induction equation that 

l=LIfx,, R, = v,L Iv, = vcx.,L~.$~ 

where R,is the magnetic Reynolds number. It follows from (7) that when 

the boundary condition must be (H), = co. But then, according to the principle of 
maximum [8], H = co everywhere outside contour C.This trivial solution exists, if 

the external magnetic field is equal C, 
We note that in this limit case (j,)C = 0, hence there is no “penetration” of the 

current induced in the fluid into the conducting layer, as if the profile were insulated 

from that current. Moreover such currents cannot even arise, since the specified current 

circulating in the closed conducting layer cannot generate a field external to contour c 
The opposite is true in the other limit case in which 

and the condition 

(dH / dn)c = C-5 / L, 

where L, is the length of the conducting layer (contour C) , is taken as the boundary 

condition, as implied by (7) and (8). In this case the most intensive exchange of curr- 
ent between the conducting layer and the fluid stream takes place. 

In the following we shall deal specifically with this case of the boundary condition. 

On part C* of the boundary of region D* corresponding to the streamlined profile we 

have 

aypc*=q- I UT I/ (&)ai (&~z/y=o=G(cD, 0) (9) 

For solving the problem in the @, Y-plane it is necessary to specify in addition to the 
boundary condition (9) the conditions at the remaining part of the boundary of region 

D*,, i.e., at the extremities of the cross section to which in the z, y -plane corresponds 
the streamline w (z, y) = 0 extending from the rear stagnation point of the profile 
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to infini~. It is reasonable to assume that along this line the magnetic field H and its 
first derivatives are continuous. On this assumption we obtain the following conditions: 

I=-0 
for @>@B+* 

cp=@+r 

We also assume that field His bounded at infinity. 
We introduce dimensionless variables 9, = CD / (r&J), It, = Y / (u,L) and h = 

= H f Hopass from h (cp, 9) to the new function 

g (9, 9) = h (rp, 44 e--n’ 

and in Polar coordinates p = j/w; 0 = arc tg $&I obtain 

Ag-Rag=0 (10) 
ag 
ae BE0 

= pG (p, 0) eeRP (0 d P d 4 

ag 
ae 

= - pG (p, 0) eVRP 
e==zx 

@Odp<a+r) 

g (p, 01 = eRy g (P + r, 24 (P > 4 (11) 

i 357 -- 
I 

eR* ag --- 
fJ afJ e=o = P+T 80 I e=ax (P > 4 

where R = R, I2 = v,L / (2%,), ?’ = I’ I (v-L) and a = 9 (Q+, YB+). 
The solution of Eq.(lO) bounded at infinity can be written as 

where Kik (t) is the Macdonald function of the imaginary index. 
The stipulation that solution g (p, 0) must satisfy the four conditions (11) yields 

m A s m (B - A ch 2nh) &A (Rp) dh = pG (p, 0) e-no (0 < P d 4 
0 

cQ h 

s 
s~~B~h2~~-~)Ki~ (Rp)dh= -~(p,O)~~p PdPda+T) (13) 

0 
co 

SAK,h(Rp)dh=eRy~BK,~[~ (p+r)~dh (P > a) 
0 0 

ibo r P. s& (B - A ch 2~1) Kih (HP) dh = 
b 

err co =- 
P-ET s 

& (B ch 2nh--A) filih [R (p + T)l dh (P > 4 
0 

These relationships constitute a system of integral equations for the determination of 
functions A (h)and B (h). It seems that for a specific stream this system can generally 
be solved only by numerical methods. The determination of functions A (h) and B (A) 

is the simplest in the case of irrotational flow Past a profile. 
In fact, by setting in (13) r = 0, after ~amformation we obtain 
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m 

s (A - B) Kik (Rp) dh = 0 (P > a,1 6% = a lu=J 
0 

I’ (A + B) h th nhKi~ (Rp) dh = - 2pG (p, 0) e-Rp (0 < P < ao) (14) 
0 

00 

s 
(A + B) 3L th nhKix @p) dh = 0 (P > ao) 

0 

Owing to the symmetry of the problem formulation in the cp, 9 -plane, the magnetic 
field is the same at points of contour c* situated at both extremities of the cross sec- 

tion, i. e, , 
57 (PY 0) = g (p, 24 (P E C”) 

Hence 
m 

s (A - B) Kih (Kp) dh = 0 (0 4 P < ao) (W 
0 

From (15) and the first of Eqs. (14) follows that A (h) = B (h).The last two of Eqs.(14) 
can now be used for the determination of function A (h). Using the Kantorovich- Lebedev 
transformation [9]. we obtain ail 

A (A) = - -$- ch nh s G (t) e-RfKih (Rt) dt (16) 
0 

Substituting this exnression into (12) and applying the known convolution formula 
a3 

s ch [(n - 
n 

0) Al Kih (x) Kih (q) dh = + K, ( 1/z2 + y2 - 2x.y cos e) 

we obtain 

87 (P, 0) = - f J G (t) e-RI K,, (R VP+ p2- 2tp cos 0) dt 

0 

For a dimensionless magnetic field we have 

h (9, $) - - f 1 G (t) eR(~-f)Ko (R I/q” + (cp - t)2) dt 
0 

(17) 

This solution coinciclzs to within notation with that. of the problem of heat convection 
from a cylinder in a potential stream derived in [4] by the method of sources and inves- 

tigated in the case of small fi, (=zR)numbers. 
As an exampJe of the use of solution (17) let us consider the irrotational flow past a 

cylinder for arbirrary R,. In this case 

G (cp, 01 = 
us 

2LCV, v/23-- 
a0 = 2 

and from (17) we have 

(-JoeR* xr2 
h NJ, ‘II)=--- s e-2R cosz u KO (R f 9” + (cp - 2 c3s2 z@) du 

C m 
0 

Using Simpson’s quadratic rule we calculate h (cp, Wand then, applying formulas 

cp = (r + 1/ r) COS X + 2, $=(r- I/ r) sin x 
rz = x2 + y” 9 x = arctg y/x 
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construct for the cylinder the lines of level h (2, Y) for Rm = 1 and R, = 2 shown in 
Fig. 3 by solid and dotted lines, respectively. These show that the gradient of the mag- 

Fig. 3 

we obtain 

netic field in the layer adjacent to the cylinder 

surface increases with increasing RR, . This im- 
plies the formation of a magnetic boundary layer 
for Rm + 1. The examination of the asymptotic 

behavior of the solution of Eq. (10) for R, >> 1 

is, therefore, of some interest. Introducing the 

small parameter E = 1/ R dig 1 and passing 
in Eq. (10) to varrables g and 7 related to cp 

and 9 by formulas cp = CA - @ and $ = 2& 

Region D* shifts to the upper half-plane rl > 0 and contour C* becomes segment 
(-I/a vi) of the E-axis. The condition 

%T 
xj q=o 

= 2EG (cp (El, 9) e-‘*” 

which is implied by (11) must be satisfied along this segment. To find a boundary value 
kind of solution of Eq, (18) with condition (X9) we set, in accordance with the generally 

accepted method [IO], 5 = 5 and q = et. Neglecting terms of the order of es from 

(18) and (19) we obtain 

go ce, t) = - f& G (cp (5)t ‘3 exp ( 
E2+2lEIts 

- a ) 

Reverting to h (cp, $), we derive the asymptotic value la” (cp, 9) for field h at R, > 1 

h (93 $1 -&J(cp, *)=-&&(((P, O)e-‘+l’r (20) 

It will be seen from (20) that the thickness of the magnetic boundary layer is of the 
order of 1 J j&z 

Authors express their sincere thanks to N.I. Akhiezer for his interest in this work, and 
to G. A, Liubimov and S, A. Regirer for their valuable comments. 
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Three-dimensional sub- and supersonic flows of gas in nozzles and channels of 
varying cross section are analyzed. The inverse problem of the theory of Lava1 

nozzles is formulated and extended to three-dimensional flows. An implicit three- 
point difference scheme with varying pitch along a layer is proposed. In the 

neighborhood of the surface for which the Cauchy data are specified an asympt- 
otic series expansion in terms of the stream-function is derived and the method 

of solving related equations is indicated. Examples of calculations of three-di- 
mensional flows in nozzles are presented. Papers [l - 31 dealing with three-di- 

mensional supersonic flows in nozzles and paper [4] in which an analytical sol- 
ution is derived for the flow in the neighborhood of the nozzle center should be 

noted among recent publications. 

1. Fundamental equation: rnd ltrtement of problem. Weintroduce 
a system of curvilinear coordinates linked with the curve y = f,, (s) lying in the zg- 
plane. The coordinates of a point are defined in this system by the arc length S, the 

distance r along the normal to this curve, 
and by the angle q in a plane normal to it 

We transform the equations of gasdynamics 
of coordinates s, r and q 

Fig. 1 

[S] by passing to new independent variables 
9 and 0 such that $ = const and 8 = const 
represent stream surfaces which can be in- 
traduced for analyzing three-dimensional 


